Blind source separation of acoustic signals in realistic environments based on ICA in the time-frequency domain

نویسندگان

  • Shuxue Ding
  • Andrzej Cichocki
  • Jie Huang
  • Daming Wei
چکیده

We present an approach for blind separation of acoustic sources produced from multiple speakers mixed in realistic room environments. We first transform recorded signals into the time-frequency domain to make mixing become instantaneous. We then separate the sources in each frequency bin based on an independent component analysis (ICA) algorithm. For the present paper, we choose the complex version of fixedpoint iteration (CFPI), i.e. the complex version of FastICA, as the algorithm. From the separated signals in the time-frequency domain, we reconstruct output-separated signals in the time domain. To solve the so-called permutation problem due to the indeterminacy of permutation in the standard ICA, we propose a method that applies a special property of the CFPI cost function. Generally, the cost function has several optimal points that correspond to the different permutations of the outputs. These optimal points are isolated by some non-optimal regions of the cost function. In different but neighboring bins, optimal points with the same permutation are at almost the same position in the space of separation parameters. Based on this property, if an initial separation matrix for a learning process in a frequency bin is chosen equal to the final separation matrix of the learning process in the neighboring frequency bin, the learning process automatically leads us to separated signals with the same permutation as that of the neighbor frequency bin. In each bin, but except the starting one, by chosen the initial separation matrix in such a way, the permutation problem in the time domain reconstruction can be avoided. We present the results of some simulations and experiments on both artificially synthesized speech data and real-world speech data, which show the effectiveness of our approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Doctoral Dissertation Blind Source Separation Based on Multistage Independent Component Analysis

A hands-free speech recognition system and a hands-free telecommunication system are essential for realizing an intuitive, unconstrained, and stress-free human-machine interface. In real acoustic environments, however, the speech recognition performance and a speech recording performance significantly degraded because we cannot detect the user’s speech with a high signal-to-noise ratio (SNR) ow...

متن کامل

Overdetermined Blind Separation of Acoustic Signals Based on MISO-Constrained Frequency-Domain ICA

We propose a new overdetermined blind source separation (BSS) using frequency-domain independent component analysis (FDICA) based on multiple-input singleoutput (MISO) constraint. To achieve a superior separation performance under reverberant environments, we set the number of microphones to be larger than that of sources. This leads to alternative problems in which the sound qualities of the s...

متن کامل

Extraction of Sensory part of Ulnar Nerve Signal Using Blind Source Separation Method

A recorded nerve signal via an electrode is composed of many evokes or action potentials, (originated from individual axons) which may be considered as different initial sources. Recovering these primitive sources in its turn may lead us to the anatomic originations of a nerve signal which will give us outstanding foresights in neural rehabilitations. Accordingly, clinical interests may be r...

متن کامل

Identification of Diesel Sound Source Based on The Independent Component Analysis

As a new approach of blind source separation (BSS), independent component analysis (ICA) has attracted extensive attention of researchers in the field of information processing. In this paper, the basic theory and algorithm of ICA are briefly introduced, and then ICA is used for the preprocessing of engine acoustic signals to identify the engine noise sources. The ICA decomposes the signals int...

متن کامل

Research of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information

Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Pervasive Computing and Communications

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2005